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Abstract

Image geolocation, classifying the location of an input
image, is a difficult problem in computer vision with many
applications. In recent years, large datasets of geotagged
images have become readily available for researchers to
use, and interest in the area has increased. Current state-
of-the-art models like img2gps use deep image classifica-
tion approaches in which the world is split into a quadtree
and the model predicts which cell an input image resides
in. Unlike these approaches which focus solely on vision,
we propose to include not only visual data in our model,
but also textual. To elaborate, our model will estimate geo-
graphic location with a multi-modal model, which leverages
both an image classifier and text-based geolocation parser.
Our results indicate that differentiation between geograph-
ically similar locations is improved by the use of hierarchi-
cal models, and that while a text parser can disambiguate
explicit locations from text near perfectly, it is more chal-
lenging to disambiguate colloquial, misspelled, and more
specific locations.

1. Introduction

In recent years, “anonymous” social media sources have
become increasingly popular, with the rise of sites like Red-
dit, where true identities are typically masked with user-
names. With this comes the need to scan the content you
post, making sure it doesn’t reveal anything about your
identity. Our goal with this project is to create a tool that al-
lows users to scan their desired images and text pairings to
see whether it reveals too much personal information about
themselves (represented by a privacy score). The applica-
tions of such a tool can be expanded to all forms of social
media, allowing users to control the amount of information
they are sharing with the world.

2. Related Work

Early work on visual-based geotagging from pho-
tographs include [1, 5] where scene matching and deep neu-

Figure 1. Five Google Street View images associated with a single
location.

ral net image classification are used to identify the location
of a single image. All of these previous work concentrate
solely on an image to identify its location, and don’t rely on
any potential captioned textual data that comes along with
it. Furthermore, these works focus solely on trying to locate
where an image is in the world, whereas our work aims to
identify how vulnerable an image-text pair is to geolocation.
We show in this work that a multi-modal model can be cre-
ated to score an image and corresponding caption based on
how likely it is that one of these previous works could find
the location with high accuracy. To the best of our knowl-
edge, our work is one of the first to generate scores for text-
image pairs based on their vulnerability to be localized to a
specific gps location.

3. Dataset
In order to limit the problem space due time and com-

pute constraints, we choose to use data from small subset
of cities for image geolocation. We utilized a dataset com-
prised of 62,058 Google Street View images that encompass
3 primary cities: Pittsburgh, Orlando, and Manhattan [7].
These images are paired with their respective geographical
coordinates (latitude and longitude). For each coordinate,
there are 4 images to cover the 360 degree view from that
location, 1 additional image to show the worm’s eye view
(Figure 1).

Figure 2 shows the label spread of the images across
these three major regions. Since the images are from
Google Street View, it is similar to images of locations that
might be posted on social media. Other datasets could lend
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Figure 2. The count of image samples from the three major cities
for which the dataset collected data. The label distribution is not
uniform, and somewhat unbalanced which introduces some chal-
lenges for training the model.

better to the task at hand, since they encompass much larger
regions. However, due to time and compute constraints,
this dataset was chosen for its smaller size. Additionally,
the main focus of interest is not actually finding locations,
but understanding what features allow for identification of
a location. Therefore, encompassing the entire world is less
necessary but would certainly provide additional pertinent
information.

For the text portion, the model used parses text and dis-
ambiguates locations via database lookup, specifically us-
ing the OpenStreetMap database, which contains location
nodes that are identified by relationship (i.e. Scotland is
in the UK) [4]. The parsing tool we employed uses rela-
tionships to group these locations hierarchically for quick
lookups (i.e. UK −→ Scotland −→ Edinburgh).

4. Methods
4.1. Image Model

Several different ways are anyalzed for splitting an im-
age dataset with geographical coordinates for each image
into groupings for classification. There are two main ways
to analyzed:

1. Splitting based on the different cities in the dataset (3
major cities)

2. Splitting based on hierarchical clustering

The first method is an obvious way of splitting data, but
in order to give our model a greater understanding of what
composes locality information in an image, the data can be
clustered in a hierarchy. The first grouping will be cities
and a secondary grouping can be splits inside a city (re-
ferred to as districts). In Figure 4, we demonstrate how
our KMeans model was able to cluster the city into clear
smaller districts. Our goal is to accurately classify districts
rather than just cities, because it makes the problem more
challenging, and will force our models to better understand

what features help distinguish locations that are geographi-
cally similar (thus yielding a better proof of concept).

The privacy score for images will be the complement of
the district prediction confidence (because the more uncer-
tain your model, the less information is divulged). Addi-
tionally, the privacy score will be considered 1 if the city
score is too low since if the model cannot even determine
the city confidently, the location is relatively unknown. Es-
sentially the image privacy score is,

Privacy Scoreimage =

{
1 if city conf. < c

1− district conf. if city conf. ≥ c

where c is cutoff value chosen for city confidence and
conf. means confidence score.

We use three different basic architectures to provide a
point of comparison and to better illustrate the nature of the
task. First, we treat the problem as multi-class problem of
both cities and district. In this case, the model simply has
sigmoid layer at the end and has 33 outputs (3 cities + 3*10
districts). This model outputs into a one-hot vector, but this
problem formulation does not make much sense in our con-
text. However, we include for the sake of comparison and
as a first pass attempt at a solution. Second, we simply have
our model output two distinct outputs: a city and district
classification. This is simply trained using a summed loss
of each outputs compared to the respective target (city or
district). Finally, we use feed-backward model where the
outputs are feed back into inputs for a child class. This
model is defined using a class hierarchy and created through
simple-hierarchy-pytorch, a python library. All the models
use a backend of a pretrained ImageNet-trained ResNeXt-
101 model with cardinality 32 and a bottleneck width of 8
[6]. The model architecture of the hierarchical model model
is described in Figure 3. The expectation is that this model
performs the best since the model gains an understanding of
relationship between cities and their districts.

We are primarily interested in its ability to extract local-
ity information (or features) from images. However, mea-
suring the ability of a network to accurately measure the
location information in a given image is a harder task, so ac-
curacy does increase our confidence that it is extracting rel-
evant features to classify upon. First, the model was trained
on the basic categories of the three major cities included in
the dataset. Then using the hierarchical classifications dis-
cussed above, the model was trained to classify both the
outer city and inner portion within the city. This aspect
could benefit from a more complex model that can under-
stand the relationship of the defined hierarchy or a dataset
that better defines what relevant image features are for lo-
cality.
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Figure 3. Here we show a figure detailing our hierarchical model components. The component resnet refers to torch implementation of
pretrained ImageNet-trained ResNeXt-101 model with cardinality 32 and a bottleneck width of 8 [6]. The nc refers to the number of cities
(3), and nd is number of districts in each city (10). The plus sign within a ball is indicative of a concatenation of it’s inputs. This figure
was created using Haris Iqbal’s neural network drawing tool. [2]
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Figure 4. On the left is clustering of the locations into initial cat-
egories, and on the right is clustering of one of those initial cate-
gories. The shown points are 1,000 data samples in each depiction.

4.2. Text Model

The text pipeline consists of a model that, given text, re-
turns locations that are within that text. The most intuitive
way to do this is toponym parsing, which disambiguates lo-
cations from text utlizing context from the sentence. The
toponym parsing tool, geoparsepy, uses the OpenStreetMap
database to disambiguate locations from cleaned, tokenized,
and entity matched text [3]. The library executes en-
tity matching by using all potential n-grams, and checking
across a corpus of entity names to avoid false positive hits.
The derivation of locations is done hierarchically, providing
superseding locations along with explicit locations from the
text (i.e. Virginia and Charlottesville, VA). The pipeline
will provide a score that measures the extent of information
about location can be found from the text, calculated by the
confidence in the prediction and the prediction specificity.

Each text input generates several candidate locations

whose confidences lie between 0 and 300. A location with
confidence 0 means it should be thrown out, locations that
are likely to be close by to the ground truth are assigned
a value of ≥ 2. Furthermore, super regions (entities that
contain several other regions) in text will allow for confi-
dences ≥ 10. If any geolocation predictions intersect (i.e
their representative regions overlap), their confidence score
is increased by 100.

When the model is run, a confidence vector ~vc and lo-
cation vector ~vloc are returned that contain the predicted lo-
cations and their confidence. The max confidence c∗ cal-
culated in equation 1 is used to determine which location
from ~vloc to use. This is done to scale the returned confi-
dence score between 0 and 1 by using thresholds.

The final text privacy score is a function of the confi-
dence and the specificity of the prediction (area covered by
the predicted location).

c∗ =


.5 if max(~vc) = 1

.5 + .25 ∗ ~vc
99 if 1 < max(~vc) < 100

.75 + .25 ∗ ~vc
300 if 100 ≤ max(~vc) ≤ 300

0 otherwise

Privacy Scoretext = (1− c∗)×min(
area

s
, 1) (1)

where s is an arbitrary constant to represent the area of a
small specific location, meant to lower the privacy score if
a very specific location is predicted confidently.

The evaluation of this model is less clear cut than the
image model, since there is no train or test set of data
to evaluate. Thus, our primary form of evaluation will
be observational, testing whether it can find explicit lo-
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Figure 5. This is a high level architecture of how composite privacy
scores are calculated.

cations (clear locations) and implicit locations (colloqui-
alisms, misspellings, etc.).

4.3. Combining Image and Text Model

The goal of the combined model is to account for both
text and image when determining location confidence. The
results from the two models are combined to provide a sin-
gle privacy score for an image/caption pair. This score is a
measure of how much personal information regarding loca-
tion is being divulged to the public.

Since the text model already considers overlap of loca-
tions when determining confidence, the best way to get a
composite score is to concatenate the predicted city to the
text input, and input this into the text model. The final score
for both the image and text is a function of the confidence
and the specificity of the prediction (similar to the equation
in 4.2). This pipeline is represented in Figure 5.

5. Experiments and Results
5.1. Image Models

Using the three different model architecture’s described
in the image model section, we report their performance in
Table 1 on the validation image dataset. The performance is
recorded as precision, recall, and f1-score (average of recall
and precision) for district categorization. The performance
is the hierarchical model is the best for districts, which is
intuitive since the model gains an understanding of what
city the image is in before predicting a districts. However,
the gap between two-output is quite small. The gap might
widen when the distinct portions of a network are larger
(approaching closer to two networks for cities and districts),
but due to time and compute constraints we severely limited
the expansiveness of the hierarchical network. Using the
hierarchical model architecture, Figure 6 shows the confu-
sion matrix for the city predictions. Clearly, the model can
very accurately predict the city given an image. Due to our
dataset containing a small subset of the world’s cities (only
3), this very high accuracy is to be expected. Determining
districts is much more of challenges so those are smaller
subsets of area and often there are several images that look
very similar to humans. Therefore, the reasonably high dis-

Method, Class Precision Recall F1-Score
Multi-Class, City 0.848 0.823 0.834
Two-Outputs, City 0.991 0.982 0.986
Hierarchical, City 0.995 0.991 0.992
Multi-Class, District 0.256 0.220 0.201
Two-Outputs, District 0.712 0.735 0.716
Hierarchical, District 0.740 0.755 0.744

Table 1. Results on the district prediction from training the three
different model architecture described in 4.1 for 10 epochs, with
learning rate of 0.0001 with 80% of the dataset as training (∼
50,000 images). For each model arch, the first section includes the
city classification performance and second section includes district
classification performance. The hierarchical model outperformed
the others for all metrics for both city classification and district
classification.
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Figure 6. The confusion matrix for city predictions for the hier-
archical architecture. The annotations are the percent of the total
validation dataset in each categorized section (∼ 12,000 images).
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Figure 7. A sample Manhattan photo (on the right) that was not
part of our dataset being tested. The feature attribution study is
also shown (on the left). The darker the green the more relevant
those parts of the image were. The model classified this as Man-
hattan with 1.000. The image privacy score for this sample was
0.013

trict accuracies presented in Table 1 increases the likelihood
that the model is understanding what components of loca-
tion are revealing.

In Figure 7, we illustrate a qualitative result from the hi-
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Figure 8. A sample Pittsburg night-time photo (on the right) that
was not part of our dataset being tested. The feature attribution
study is also shown (on the left). The darker the green the more
relevant those parts of the image were. The model classified this as
Pittsburg with 0.911 which is relatively low since it is very over-
confident model when predicting cities. The image privacy score
for this sample was 0.555.
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Figure 9. A sample Manhattan photo (on the right) that was not
part of our dataset being tested. The feature attribution study is
also shown (on the left). The darker the green the more relevant
those parts of the image were. The model classified this as Pitts-
burgh with 0.998 which is overconfidently incorrect. The image
privacy score for this sample was 0.322.

erarchical image model along with the feature graph. This
feature graph shows which features were most relevant in
the prediction of the image to be in that specific location.
For images outside the three given cities, the model tends
to be overconfident in its guess when the image looks like
a portion of the city. This intuitively makes sense, since, in
the model’s perspective, the only locations that exist are the
three cities. Expanding the scope of the dataset (including
more locations) would help lower this confidence, or using
a dataset geared specifically to this task. Additionally, the
dataset biases could play a major role in representing too
much on features such as weather and sky color. As seen in
Figure 8, the night-time images slightly work, but the lower
confidence of the model is symptomatic of the dataset bias.
The dataset biases result from many (if not all) of the im-
ages are taken during the daytime, and perhaps even around

similar days and times. This could lead the image model to
inaccurately correlating aspects that are dependent on time
with the location such as the sun’s position. Finally, Figure
9, our image model’s weakness is displayed. Even when
it incorrectly classifies a city, the image model is still very
confident with its choice. The small sample of cities is most
likely the cause of this phenomenon. Therefore, expand-
ing the dataset to many more locations would greatly lower
the model’s confidence and hopefully increases its ability to
understanding what compromises location.

5.2. Text Model

The Text model seemed to perform well on explicit lo-
cations and toponyms, but not so well on implicit locations.
Below are a few examples (scored 0-100):

1. Going to Disneyland in Orlando: Predicts Orlando FL
with privacy score 50

2. Just landed at Pittsburgh International: predicts Pitts-
burgh, PA with privacy score 50

3. Went shopping in Charlottesville: predicts Char-
lottesville, VA with privacy score 39

4. Saw the statue of liberty and empire state building: No
prediction with privacy score 100

Some additional limitations we observed from the text
model are that it is not able to derive colloquial locations
from text (i.e. cannot find ”Philadelphia” from ”Philly”).
The text parser also is unable to disambiguate more specific
locations, such as street names or store name . This can be
seen in sentence 4 above, where it is unable to recognize
’Statue of Liberty’ or ’Empire State Building’ as locations,
yielding a 100% score. It is also unable to disambiguate
misspelled locations.

6. Conclusions
Image and text localization together is a difficult task,

especially when there aren’t appropriate datasets for loca-
tion prediction that combine the two. Our goal was to cre-
ate a working methodology to use text and images together
to predict a location without such a dataset. We were able
to create working proof of concept, geolocalizing images
into about 30 districts with a hierarchical model, and dis-
ambiguating location names from text via parsing. How-
ever, both models had their detriments. The image model
was very confident with mispredictions, and the text model
was unable to disambiguate implicit location names.

Since we saw lots of deficiencies in the text model, im-
provements could be made by using parts of speech (i.e.
nouns) in a sentence to disambiguate locations. Combined
with an expansion of the lookup database to include more
specific locations, this would allow the parser to detect more
specific locations with less computational intensity.
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